

PESTICIDE RESIDUE ANALYSIS

QUICK, EASY, CHEAP, EFFECTIVE, RUGGED AND SAFE

QuEChERS, the Multiresidue Method of Choice

QuEChERS (pronounced "catchers"), an acronym for **Q**uick, **E**asy, **C**heap, **E**ffective, **R**ugged and **S**afe, covers a variety of sample preparation and clean-up techniques for the analysis of multiple pesticide residues in agricultural matrices.

Originally designed for the analysis of fruits and vegetables, **QuECHERS** now includes a wide range of agricultural products. Since its development and publication by scientists at the USDA in 2003, **QuECHERS** has gained significant popularity as the method of choice. It combines several sample preparation steps and extends the range of analytes recovered over older, tedious extraction methods. A driving force in the growth of **QuECHERS** is the emerging need to determine trace amounts of analytes in a high throughput environment.

Matrices include:

- animal products--meat, fish, kidney, chicken, milk, honey
- cereals and grain products
- · food products--wines, juices, fruit and vegetables

The expansion of the **QuEChERS** methodology indicates not only its power for sample extraction and clean-up but also addresses the concern about detecting a vast array of pesticides, herbicides, fungicides, antibiotics, and other compounds throughout the entire food supply. **QuEChERS** in its basic form involves three steps:

- 1. liquid micro-extraction
- 2. solid-phase clean-up
- 3. LC/MS/MS or GC/MS analysis

QuEChERS continues to undergo modifications for improved sample preparation in a broad array of analytes in a vast array of matrices. Due to the large number of **QuEChERS** methods now published, **QuEChERS** is considered an "approach" rather than a "method." **QuEChERS** has now become a generic technique with many modifications, each variation is designed to accomplish one thing—quick sample extraction and clean-up.

Modifications to the original **QuEChERS** method have been introduced to:

- increase sample throughput while reducing costs
- minimize degradation of susceptible compounds (e.g. base and acid labile pesticides)
- expand the range of matrices amenable by this approach

The Three Primary QuEChERS Methods

1) Original QuEChERS Method (by Anastassiades, Lehotay, et al)

- Sodium Chloride is used to reduce polar interferences
- Provides the cleanest extraction because it uses fewer reagents
- Does not use acetic acid which may be problematic in GC/MS analysis
- Uses dispersive clean-up procedures

2) AOAC 2007.01

- Employs 1% acetic acid in acetonitrile and sodium acetate buffer to protect base sensitive analytes from degradation
- A USDA study has demonstrated that this method provides superior recovery for pH sensitive compounds when compared to the other two QuEChERS methods
- The approach uses acetic acid in the extraction step. The acetic acid can overload the PSA sorbent used in the clean-up step making it ineffective and possibly causing GC resolution issues

3) EN 15662

- The European method includes sodium chloride to limit polar interferences and several buffering reagents to preserve base sensitive analytes
- Sodium hydroxide used in the citrus step should be avoided as it can add impurities to the extract as well as damage the sorbent used in the clean-up step

Sample Preparation and Extraction

- Freeze samples to -20°C
- Homogenize with dry ice until a free flowing powder is formed
- The sample is then:
- 1) extracted into solvent
- 2) dispersive or cartridge SPE is used for clean-up

QuEChERS

Features and Impact

QuEChERS significantly improves laboratory efficiency and throughput. A batch of 20 extracts can be prepared in less than 60 minutes by a single analyst. This procedure requires only a few milliliters of solvent and is capable of generating recoveries of 90-110% with RSD's < 5% for a wide range of GC and LC amenable compounds.

Extraction and Clean-Up

- Solvent extraction techniques are designed to remove as much analyte from the base matrix as possible
- Solvent selection is important to minimize co-extracting compounds
- Sample clean-up is necessary to reduce interferences
- Interferences can damage analytical instrumentation and complicate analyte identification and quantification

Extraction Reagents and Their Function

Magnesium sulfate, anhydrous—facilitates solvent partitioning and improves recovery of polar analytes

Acetic acid—used to adjust pH

Acetonitrile—organic solvent providing the best characteristics for extracting the broadest range of pesticides with the least number of co-extractables. Amenable for both LC and GC analysis

Buffers—prevents degradation of pH sensitive analytes by maintaining optimal pH

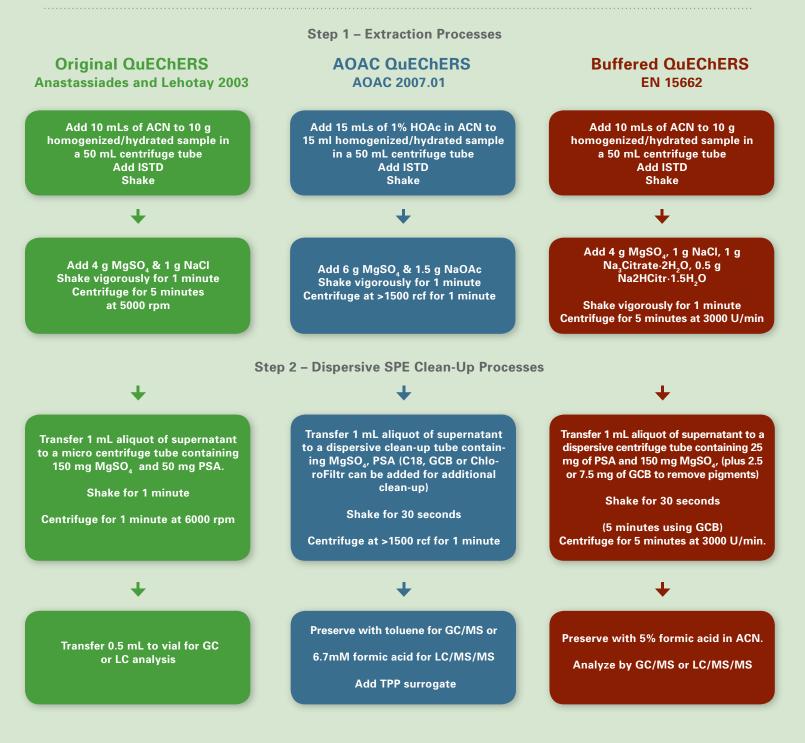
Sodium Chloride—reduces the amount of polar interferences

Clean-up Reagents and Their Function

Aminopropyl –removes sugars and fatty acids. Serves the same function as PSA, but is less likely to catalyze degradation of base sensitive analytes. Aminopropyl has a lower capacity for clean-up than PSA

ChloroFiltr®— polymeric sorbent for selective removal of chlorophyll from acetonitrile extracts without loss of polar aromatic pesticides

C18—removes long chain fatty compounds, sterols and other non-polar interferences


Graphitized carbon black (GCB)—strong sorbent for removing pigments, polyphenols, and other polar compounds: examples of planar (polar aromatic) pesticides which may be removed: chlorothalonil, coumaphos, hexachlorobenzene, thiabendazole, terbufos, and quintozene

Magnesium sulfate anhydrous-removes water from organic phase

Primary Secondary Amine (PSA)—used in the removal of sugars and fatty acids, organic acids, lipids and some pigments. When used in combination with C18, additional lipids and sterols can be removed

QuEChERS Methods Schematic Flow Chart

Step 2a – Alternative Cartridge SPE Clean-Up Processes

GCB graphitized carbon black MgSO₄ magnesium sulfate anhydrous ACN acetonitrile HOAC acetic acid NaCI sodium chloride Na₃Citrate sodium citrate dibasic dihydrate Na₂HCitr sodium citrate dibasic sesquihydrate PSA primary secondary amine TPP triphenyl phosphate

Rinse cartridge containing PSA and GCB with 5 mL of toluene

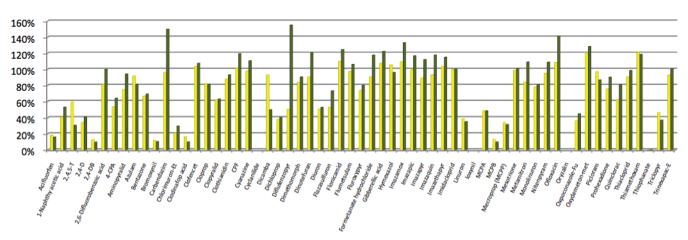
Transfer an aliquot of the supernatant to the cartridge

Start collection

Elute with 6 – 12 mL of 3:1 acetone: toluene

Concentrate for GC/MS or concentrate to dryness and reconstitute in 6.7mM formic acid for LC/MS/MS


Cartridge or Dispersive SPE


- The original QuEChERS Method uses dispersive SPE clean-up because it's quicker, easier, and less expensive than using packed cartridges
- With dispersive SPE, the quantity, type of adsorbent, as well as the pH and polarity of the solvent, can be readily adjusted for differing matrix interferences and various analytes
- dSPE tubes containing ChloroFiltr® can be used to remove chlorophyll without loss of planar analytes
- PSA and graphitized carbon sorbents are available in a 6mL SPE cartridges with Teflon® frits
- Cartridges provide a better clean-up than dispersive SPE

Chloro Filtr[®]

Polymeric Sorbent

- **ChloroFiltr**[®] is a new polymeric sorbent available exclusively from UCT. It is designed to replace graphitized carbon black (GCB) for the efficient removal of chlorophyll without loss of planar analytes
- ChloroFiltr® has been tested against hundreds of pesticides and herbicides and has been shown to reduce chlorophyll concentration by greater than 82% without loss of planar analytes.

LC/MS/MS Amenable Analytes (50 ng/g spike) ESI- Mode

ChloroFiltr® recoveries are shown in green

QuEChERS Spinach Extract (acetonitrile) Showing Effectiveness of ChloroFiltr®

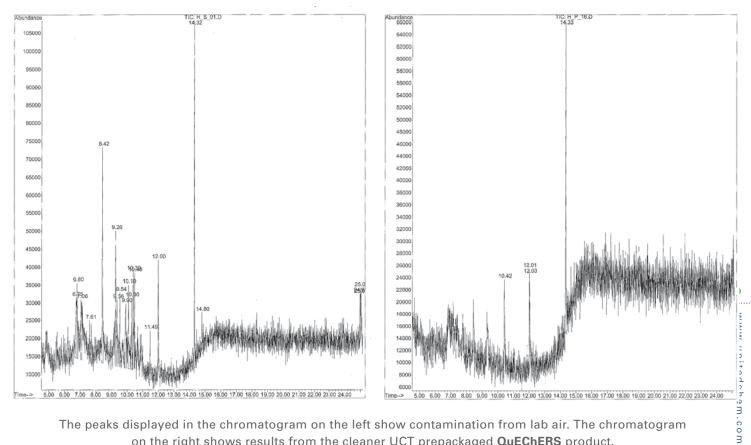
Spinach Extract Before and After ChloroFiltr

Why Use UCT QuEChERS Products?

- Pre-packed products save valuable laboratory time for increased lab throughput
- Best selection of QuEChERS products available including dual layer cartridges
- Cleaner extracts from cleaner products
- · Excellent lot to lot reproducibility
- Magnesium sulfate is organic free
- Unique ChloroFiltr® sorbent removes chlorophyll from acetonitrile extracts without loss of planar analytes
- UCT offers sorbents in bulk, dispersive or cartridge format
- Expert QuEChERS technical support
- Custom made products are available

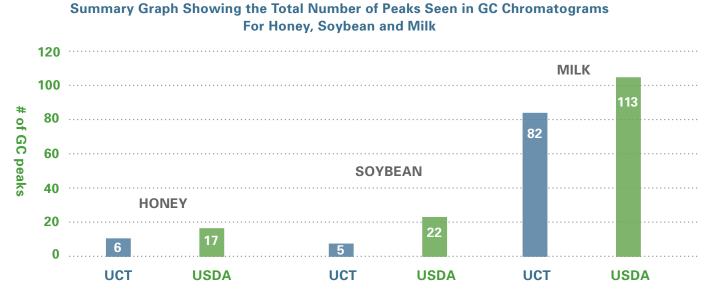
Contamination Reduced by UCT Products

A few laboratories assemble their own clean-up products for the QuEChERS analysis. QuEChERS sorbents usually become contaminated when exposed to air in the typical laboratory.


A study conducted at a USDA laboratory compared commercially prepared QuEChERS products to those prepared in a USDA lab. Bulk anhydrous magnesium sulfate, PSA, and endcapped C18 sorbents provided by UCT were assembled in a USDA laboratory. These lab preps were compared to UCT manufactured products from the same lot of bulk sorbents. The ratio of magnesium sulfate, PSA and C18 was 3:1:1 for this test. Products were evaluated on extracts of milk, honey and soybean and the efficacy of the clean-up was determined by GC/MS analysis. Comparisons of the extracts were made by counting the number of peaks above threshold. Results proved that the UCT prepared product provided superior clean-ups compared to the product prepared in the lab. The results were confirmed in three different matrices. The extra peaks observed in the lab prepared product were probably caused by contamination from the lab air. UCT assembled products are prepared under controlled manufacturing conditions so the potential for contamination is eliminated.

These results, along with time and labor savings, prove that QuEChERS products preassembled at UCT are cleaner and more cost effective than products assembled in the lab.

UCT prepared products show a significant reduction in background


Honey Extracted with "In-House" Product

Honey Extract Cleaned with UCT Products

The peaks displayed in the chromatogram on the left show contamination from lab air. The chromatogram on the right shows results from the cleaner UCT prepackaged QuEChERS product.

Studies with soybean and milk products show similar improvement in clean-up when using UCT manufactured vs. laboratory prepared products.

The use of UCT prepared products results in cleaner extracts

QuEChERS Troubleshooting Tips

I. Recovery Issues

- a) Use matrix matched calibration standards for greatest accuracy
- b) Use internal standards
- c) Samples must be at least 80% hydrated for effective extraction
- d) Adding extraction salts directly onto the sample will reduce recovery. Mix sample with solvent first
- e) Buffering is required for base sensitive compounds
- f) Graphitized Carbon Black (GCB) can reduce planar analyte recovery
 - i. Use **ChloroFiltr®** during extraction to remove chlorophyll
 - ii. Use less GCB
 - iii. Use dual phase (GCB/PSA) cartridge and elute with 3:1 acetone/toluene (product ECPSACB256 is recommended)
- g) Some pesticides are amenable by GC while others should be analyzed by LC/MS/MS. This depends on their thermal stability and volatility
- h) Solvent exchanging the final extract into toluene prevents the loss of thermally labile pesticides in the GC inlet
- i) Adding dilute formic acid to the extract after clean-up will prevent degradation of base sensitive compounds while waiting for LC analysis
- j) Do not use **ChloroFiltr®** when extracting mycotoxins or hexachlorobenzene

II. Chromatography Issues

- a) Acetic acid can hinder the clean-up effectiveness of PSA and cause fronting and tailing issues with GC chromatograms. Choose a QuEChERS method that does not use acetic acid
- b) Dispersive SPE may not produce "clean enough" extracts. Use cartridge clean-up to yield a cleaner extract. Options can include using UCT dual-phase cartridges containing PSA, C18 or GCB

QuEChERS Technique and Extraction Product Part Number

Technique	Reagents	Product
Original QuEChERS	4g MgSO₄ 1g NaCl	ECMSSC50CT-MP
Original QuEChERS	6g MgSO _{4,} 1.5g NaCl	ECMSSC50CTFS-MP
Extra NaCl		
Original QuEChERS	8g MgSO _{4,} 3.5g NaCl	ECMSNA50CT-MP
Scaled up		
AOAC 2007.01	6g MgSO _{4,} 1.5g Na acetate	ECMSSA50CT-MP
Buffered QuEChERS		
Buffered QuEChERS	4g MgSO _{4,} 1g Na acetate	EC4MSSA50CT-MP
Scaled back		
EN 15662	4g MgSO _{4,} 1g NaCl,	ECQUEU750CT-MP
European QuEChERS	500mg Na citrate dibasic sesquihydrate,	
	1g Na citrate tribasic dihydrate	
Florida CR Method 260	6g MgSO _{4,} 1.5g NaCl,	EUMIV50CT-MP
	1.5g Na citrate dihydrate	
	750mg disodium citrate sesquihydrate	
QuEChERS Method for Wine	8g MgSO _{4,} 2g NaCl	ECQUVIN50CT-MP
Acrylamide QuEChERS	4g MgSO ₄ 0.5g NaCl	ECMS4MSC550CT-MP

Dispersive SPE Clean-Up Guide

Tube Size Recommendations

2 mL centrifuge tubes for 1 mL of extract
15 mL centrifuge tubes for 3+ mL of extract

Matrix	Product Contents	Product Recommendations	Product Application & Reference Notes
Pigmented Fruits & Vegetables High pigmentation, some planar analytes	Magnesium sulfate anhydrous Primary Secondary Amine (PSA) Graphitized Carbon Black (GCB) Aminopropyl (NAX) Endcapped C18 (C18)	CUMPSCB2CT ECMPSCB15CT ECQUEU1115CT ECQUEU32CT ECQUEU42CT ECQUEU515CT ECQUEU615CT ECPSACB256 ECMNAX15CT CUMPSC1875CB2CT	13,25 J F 13 (recommended)
General Fruits & Vegetables Lightly pigmented	Magnesium sulfate anhydrous Primary Secondary Amine (PSA) Graphitized Carbon Black (GCB) Endcapped C18 (C18) Aminopropyl (NAX)	ECMPSA50CT CUMPS2CT ECMS12CPSA415CT ECMPSA615CT ECQUEU12CT ECMPS15CT CUMPSC1875CB2CT ECMNAX15CT	21 1 26 24 (recommended) 13
Pigmented Fruits & vegetables with waxes/lipids	Magnesium sulfate anhydrous Primary Secondary Amine (PSA) Graphitized Carbon Black (GCB) C18 Endcapped Aminopropyl (NAX)	CUMPSC1875CB2CT ECQUUS215CT ECMNAX15CT	(recommended) 2,7 13
High Lipid Content (fish, meats and nuts)	Magnesium sulfate anhydrous Primary Secondary Amine (PSA) C18 Endcapped	ECMSC1850CT CUMPS15C18CT ECMPSC1815CT CUMPSC1815CT2 ECQUEU22CT ECQUEU315CT ECMSC1850CT (No PSA, for acidic analytes) ECPSAC1856* CUMPSC18CT	C 23 20 2, 4, 12
Animal Products other liquid Matrices Honey, wine, milk, olive oil etc.	Magnesium sulfate anhydrous Primary Secondary Amine (PSA) C18 Endcapped	ECMPSCB15CT ECMSC1850CT CUMPSC18CT ECMPSCB15CT	19 4 J
Vegetation with Chlorophyll	Magnesium sulfate anhydrous Primary Secondary Amine (PSA) or ChloroFiltr® products	CUMPSGG2CT ECMPSGG15CT	8 8
Cereal & Grain Products	Magnesium sulfate anhydrous Primary Secondary Amine (PSA) C18 Endcapped	CUMPS15C18CT CUMPS2CT	10, D E

UCT QuEChERS Applications Notes

А	Optimized QuEChERS Method For Acrylamide Analysis		
		CUMPS2CT	DCN-901210-175
		ECMS4MSC550CT-MP	
В	Flukicides / Anthelmintics by QuEChERS	ECMSSC50CT-MP	DCN-905011-178
		ECMSC1850CT	
С	Antibiotics in Beef or Serum by QuEChERS	ECMSC1850CT	DCN-903211-179
D	Multiresidue Analysis in Cereal Grains Using Modified	ECMSSC50CT-MP	DCN-014202-183
	QuEChERS Method with UPLC-MS/MS and GC-TOFMS	CUMPS15C18CT	
Е	Trichothecene Type A & B Analysis in Wheat and Corn	ECMSSC50CT-MP	DCN-102201-182
	Using the QuEChERS Approach	CUMPS2CT	
F	Extraction of Pesticides from Tomato Using the	ECQUEU32CT	DCN-017103-185
	QuEChERS Approach This method is applicable to all pigmented fruit and vegetables	ECQUE750CT-MP	
		ECQUEU515CT	
G	Pesticides in Fatty Matrices Extraction	ECPSAC1856	DCN-908280-126
		CUMPSC18CT	
Н	Pesticide and PAH Extraction of Grass and Other Leafy	ECQUEU750CT-MP	DCN-010103-184
	Vegetation by QuEChERS Using ChloroFiltr® Clean-Up	CUMPSGG2CT ECMPSGG15CT	
		CUMPS2CT	DCN-900840-157
Ι	QuEChERS Extraction and Clean-Up of Pesticides from Olive Oil	001111 0201	DCN-900640-157
	QuEChERS Multiresidue Pesticide Method for the	ECQUVIN50CT	DCN-904280-137
J	Determination of Multiple Pesticides in Wines	ECMPSCB15CT	
	This summary describes a multiresidue pesticide method for the determination of 72 pesticides in wines		
	Extraction of Polycyclic Aromatic Hydrocarbons from	ECMPSC1815CT	DCN-016201-175
К	Fish Using the QuEChERS Approach	ECMSSC50CT-MP	

.....

12

www.unitedchem.com

UCT QuEChERS Applications Notes

	Application Title	Products Used	Document Control Number
L	Extraction of Pyrethrin and Pyrethroid Pesticides from Fish Using the QuEChERS Approach	EC4MSSA50CT-MP CUMPSC18CT	DCN-117110-202
Μ	EURL-FV Multiresidue Method Using QuEChERS by GC-QqQ/MS/MS & LC-QqQ/MS/MS for Fruits & Vegetables	ECQUEU750CT ECMPS15CT	DCN-117110-201
N	Determination of Anthelmintic Drug Residues in Milk Using Ultra High Performance Liquid Chromatography- Tandem Mass Spectrometry*	ECMSSC50CT-MP ECMSC1850CT	DCN-012101-195
0	Analysis of Cyromazine in Poultry Feed Using a QuEChERS Approach	ECMSSA50CT-MP EEC18156	DCN-012101-196
Р	QuEChERS Pesticide Analysis for Fresh Produce	ECMSSC50CTFS-MP ECQUEU1115CT ECMSC1850CT ECMAG00D	DCN-012101-197
Q	QuEChERS Analysis of Miticides and Other Agrochemicals in Honey Bees, Wax or Pollen	ECMSSA50CT-MP CUMPSC18CT ECPSACB256 ECMAG00D	DCN-011308-189
R	QuEChERS Sample Preparation For The Analysis Of Pesticide Residues In Olives	ECMSSC50CT-MP ECQUEU122CT CUMPSC1875CB2CT	DCN-111040-211

Products List and Use Description

QuEChERS Multi-Packs

Micro Extraction Products—Reagent Pouches 50 mL centrifuge tubes included (50/pk)

Part Number	Contents
EC4MSSA50CT-MP	4000 mg MgSO ₄
	1000 mg Sodium Acetate
ECMSNA50CT-MP	8000 mg MgSO ₄
	3500 mg Sodium Chloride
EUMIV50CT-MP	6000 mg MgSO ₄
	1500 mg Sodium Chloride
	750 mg Disodium Citrate sesquihydrate
	1500 mg Sodium Citrate tribasic dihydrate
ECMSSA50CT-MP	6000 mg MgSO ₄
	1500 mg Sodium Acetate
ECMSSC50CT-MP	4000 mg MgSO ₄
	1000 mg Sodium Chloride
ECMSSC50CTFS-MP	6000 mg MgSO ₄
	1500 mg Sodium Chloride
ECQUVIN50CT-MP	8000 mg MgSO ₄
	2000 mg Sodium Chloride
ECQUEU750CT-MP	4000 mg MgSO ₄
European QuEChERS	1000 mg Sodium Chloride
Method EN 15662	500 mg Sodium Citrate dibasic sesquihydrate
	1000 mg Sodium Citrate tribasic dihydrate
ECMS4MSC550CT-MP	4000 mg MgSO ₄
	500 mg Sodium Chloride

QuEChERS Multi-Packs

Micro-Extraction Products-Reagent Pouches (without tubes)

Part Number	Contents
ECMSSA-MP	6000 mg MgSO ₄
	1500 mg Sodium Acetate
ECMSSC-MP	4000 mg MgSO ₄
	1000 mg Sodium Chloride
ECQUEU7-MP	4000 mg MgSO ₄
	1000 mg Sodium Chloride
	500 mg Sodium Citrate dibasic sesquihydrate
	1000 mg Sodium Citrate tribasic dihydrate
EUMIV-MP	6000 mg MgSO₄
	1500 mg Sodium Chloride
	750 mg Disodium Citrate sesquihydrate
	1500 mg Sodium Citrate tribasic dihydrate

14

Extraction Kits

ECQUEU215CT 50/pk	15 mL	6000 mg MgSO ₄ 1500 mg Sodium Acetate
ECQUEU750CT 50/pk European QuEChERS Method EN 15662	50 mL	4000 mg MgSO₄ 1000 mg Sodium Chloride 500 mg Sodium Citrate dibasic sesquihydrate 1000 mg Sodium Citrate tribasic dihydrate
ECMSSC50CT 250/pk	50 mL	4000 mg MgSO₄ 1000 mg Sodium Chloride
ECMSSA50CT 250/pk	50 mL	6000 mg MgSO₄ 1500 mg Sodium Acetate
EUMIV50CT 250/pk	50 mL	6000 mg MgSO₄ 1500 mg Sodium Chloride 750 mg Disodium Citrate sesquihydrate 1500 mg Sodium Citrate tribasic dihydrate
ECMS4MSC550CT 50/pk Designed for Acrylamide Extraction	50 mL	4000 mg MgSO ₄ 500 mg Sodium Chloride
ECMS4MSC550CT	50 mL	4000 mg MgSO ₄ 500 mg Sodium Chloride
ECQUEU415CT	15 mL	4000 mg MgSO ₄ 1000 mg Sodium Chloride 500 mg Sodium Citrate dibasic sesquihydrate 1000 mg Sodium Citrate tribasic dihydrate

ChloroFiltr® Dispersive Products

Part Number	Size	Contents
CUMPSGG2CT 100/pk A dispersive SPE product for removing polar orgat acids, some sugars, lipit chlorophyll. Designed for aliquot of supernatant	anic ds and	150 mg MgSO₄ 50 mg PSA 50 mg ChloroFiltr®
ECMPSGG15CT 50/pk Same as CUMPSGG2CT except for larger sample Designed for 3 mL of supernatant		900 mg MgSO₄ 300 mg PSA 150 mg ChloroFiltr®

Dispersive Products

Dispersive Products

Part Number	Size	Contents
CUMPSC18CT	2 mL	150 mg MgSO₄
100/pk		50 mg PSA
		50 mg endcapped C18
CUMPS15C18CT	2 mL	150 mg MgSO ₄
100/pk		150 mg PSA
		50 mg endcapped C18
ECMPS15CT	15 mL	900 mg MgSO₄
50/pk		150 mg PSA
ECQUEU315CT	15 mL	900 mg MgSO ₄
50/pk		150 mg PSA
		150 mg endcapped C18
ECQUEU615CT	15 mL	900 mg MgSO ₄
50/pk		150 mg PSA
		45 mg GCB
ECQUEU515CT	15 mL	900 mg MgSO ₄
50/pk		150 mg PSA
		15 mg GCB
ECMPSA50CT	50 mL	1200 mg MgSO $_4$
250/pk		200 mg PSA
ECMPSCB15CT	15 mL	900 mg MgSO ₄
50/pk		300mg PSA
		150 mg GCB
ECMPSC1815CT	15 mL	900 mg MgSO ₄
50/pk		300mg PSA
		150 mg endcapped C18
ECMS12CPSA415CT	15 mL	1200 mg MgSO ₄
50/pk		400 mg PSA
CUMPSC1815CT2	15 mL	1200 mg MgSO ₄
50/pk		400 mg PSA
		400 mg endcapped C18
ECQUUS215CT	15 mL	1200 mg MgSO ₄
50/pk		400 mg PSA
		400 mg GCB
		400 mg endcapped C18

Dispersive Products

Part Number	Size	Contents
ECQUEU1115CT 50/pk	15 mL	1200 mg MgSO₄ 400 mg PSA 400 mg GCB
ECMPSA615CT 50/pk	15 mL	1800 mg MgSO ₄ 600 mg PSA
ECMNAX15CT 50/pk Florida-Modified QuECI State Program Fruits ar		900 mg MgSO₄ 150 mg Aminopropyl bonded silica
ECMSC1850CT 50/pk For cleanup of extracts analytes with acidic fun	0	1500 mg MgSO₄ 500 mg endcapped C18

such as mycotoxins and some herbicides

Cartridge Products

Dual phase cartridges are available as an alternative to traditional QuEChERS dSPE clean-up 30/pk

Products are manufactured with Teflon frits

Part Number	Size	Contents
ECPSACB6	6 mL	200 mg Graphitized Carbon Black GCB (top layer) Teflon frit 400 mg PSA (bottom layer)
ECPSACB256	6 mL	(recommended) 250 mg Graphitized Carbon Black GCB (top layer) Teflon frit 500 mg PSA (bottom layer)
ECPSACB506	6 mL	500 mg Graphitized Carbon Black GCB (top layer) Teflon frit 500 mg PSA (bottom layer)
ECNAXCB506	6 mL	500 mg Graphitized Carbon Black GCB (top layer) Teflon frit 500 mg Aminopropyl bonded silica (bottom layer)

Appendix I

List of possible pesticide analytes that have been shown to yield >90% (or >70 %*) recoveries using the QuEChERS method. GC-amenable pesticides are capitalized; those preferentially analyzed by LC/MS-MS are not capitalized; those that can be analyzed by either technique are underlined**

Pesticide Analytes

acephate*	acetamiprid	Acrinathrin	aldicarb	aldicarb sulfone
aldicarb sulfoxide	Aldrin	azaconazole	azamethiphos	azinphos-methyl
azoxystrobin	Bifenthrin	bitertanol	Bromopropylate	bromuconazole
Bupirimate	buprofezin	butocarboxim	butocarboxim sulfone	butocarboxim sulfoxide
Cadusafos	<u>carbaryl</u>	carbendazim	carbofuran	3-hydroxy-carbofuran
chlorbromuron	(α-, γ-)Chlordane	(α-,β-Chlorfenvinphos	Chlorpropham	Chlorpyrifos
Chlorpyrifos-methyl	Chlorthaldimethyl	Chlorothalonil*	Chlozolinate	clofentezine
Coumaphos	cycloxydim*	(λ-)Cyhalothrin	cymoxanil	Cypermethrin
cyproconazole	cyprodinil	(2,4'-4,4'-)DDE	(2,4'-4,4'-)DDT	Deltamethrin
demeton	demeton-O-sulfoxide	demeton-S-methyl	demeton-S-methyl sulfone	desmedipham
Diazinon	dichlofluanid*	Dichlorobenzophenone	dichlorvos	diclobutrazole
Dicloran	dicrotophos	Dieldrin	Diethofencarb	difenoconazole
Diflufenican	dimethoate	dimethomorph	diniconazole	Diphenyl
Diphenylamine	disulfoton	disulfoton sulfone	diuron	dmsa
dmst	dodemorph	α- Endosulfan	-Endosulfan	Endosulfan sulfate
EPN	epoxiconazole	Esfenvalerate	etaconazole	ethiofencarb sulfone
ethiofencarb sulfoxide	Ethion	ethirimol	Ethoprophos	etofenprox
Etridiazole	Famoxadone	fenamiphos	fenamiphos sulfone	Fenarimol
enazaguin	fenbuconazole	fenhexamid*	Fenithrothion	fenoxycarb
Fenpiclonil	Fenpropathrin	Fenpropidine	fenpropimorph	fenpyroximate
enthion	fenthion sulfoxide	Fenvalerate	florasulam*	Flucythrinate I & II
Iudioxonil	flufenacet	Flufenconazole	flusilazole	Flutolanil
Fluvalinate	Fonophos	fosthiazate	Furalaxyl	furathiocarb
urmecyclox	Heptachlor	Heptachlor epoxide	Heptenophos	Hexachlorobenzene
nexaconazole	hexythiazox	imazalil	imidacloprid	Iprodione
provalicarb	isoprothiolane	isoxathion	kresoxim-methyl	Lindane
inuron	Malathion	malathion oxon	Mecarbam	mephosfolan
Vlepronil	Metalaxyl	metconazole	methamidophos*	Methidathion
nethiocarb	methiocarb sulfone*	methiocarb sulfoxide	methomyl	methomyl-oxime
netobromuron	metoxuron	Mepanipyrim	Mevinphos	monocrotophos
nonolinuron	myclobutanil	nuarimol	Ofurace	omethoate
<u>oxadixyl</u>	oxamyl	oxamyl-oxime	oxydemeton-methyl	paclobutrazole
Parathion	Parathion-methyl	penconazole	pencycuron	cis- Permethrin
rans-Permethrin	phenmedipham	o-Phenylphenol	Phorate	phorate sulfone
Phosalone	Phosmet	Phosmet-oxon	phosphamidon	Phthalimide
<u>picoxystrobin</u>	Piperonyl butoxide	pirimicarb	pirimicarb-desmethyl	Pirimiphos-methyl
prochloraz	Procymidone	profenofos	Prometryn	Propargite
Propham	propiconazole	propoxur	Propyzamide	Prothiofos
oymetrozine*	Pyrazophos	pyridaben	pyridaphenthion	pyrifenox
pyrimethanil	Pyriproxyfen	Quinalphos	Quinoxyfen	Quintozene
ethoxydim*	spinosad	spiroxamine	tebuconazole	tebufenozide
ebufenpyrad	tetraconazole	Tetradifon	Tetrahydrophthalimide	Terbufos
Terbufos sulfone	thiabendazole	thiacloprid	thiamethoxam	thiodicarb
hiofanox	thiofanox sulfone	thiofanox sulfoxide	thiometon	thiometon sulfone
hiometon sulfoxide	thiophanate-methyl	Tolclofos-methyl	tolylfluanid*	triadimefon
riadimenol	Triazophos	trichlorfon	tricyclazole	tridemorph
• • • • • • • • • • • • • • • • • • • •				
<u>rifloxystrobin</u> /amidothion sulfone	trifluminazole vamidothion sulfoxide	Trifluralin Vinclozolin	<u>Triphenylphosphate</u>	vamidothion

** from "Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) Approach for Determining Pesticide Residues", Lehotay, Steven J., U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center; 600 East Mermaid Lane; Wyndmoor, Pennsylvania 19038; USA

References

UCT QuEChERS Bibliography

1. Development and Interlaboratory Validation of a QuEChERS-Based Liquid Chromatography-Tandem Mass Spectrometry Method for Multiresidue Pesticide Analysis, Wong J, Chunyan H, Zhang K, Yang P, Agric. Food Chem

2. Analysis of Cyromazine in Poultry Feed Using the QuEChERS Method Coupled with LC-MS/MS, Xia K, Atkins J, Foster C, Armbrust K, J Agric. Food Chem

3. Multiresidue Analysis of 50 Pesticides in Grape, Pomegranate and Mango by Gas Chromatography-Ion Trap Mass Spectrometry, Savant R, Banerjee K, Utture S, Patil S, Dasgupta S, Ghaste M, Adsule P, J Agric. Food Chem

4. **High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health**, Mullin C, Frazier M, Frazier J, Ashcraft S, Simonds R, Van Engelsdorp D, Pettis J, www.plosone.org; 5(3) (March 2010)

5. Multiresidue Pesticide Analysis in Fresh Produce by Capillary Gas Chromatography-Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) and -Tandem Mass Spectrometry

GC-MS/MS), Wong J, Zhang K, Tech K, Hayward D, Makovi C, Krynitsky A, Schenck F, Banerjee K, Dasgupta S, Brown D J Agric. Food Chem

6.**Multiresidue Determination and Uncertainty Analysis of 87 Pesticides in Mango by Liquid Chromatography-Tandem Mass Spectrometry**, Banerjee K, Oulkar D, Patil S, Jadhav M, Dasgupta S, Patil S, Bal S and Adsule P, J. Agric. Food Chem.; 57:4068–4078 (2009)

7. Rapid Analysis of Chemical Residues in Food, Lehotay, S; Pittcon 2006

8. Evaluation Of The QuEChERS Sample Preparation Approach For The Analysis Of Pesticide Residues In Olives, Cunha S, Lehotay S, Mastovska K, Fernandes J, Beatriz M, J. Sep. Sci.; 30:620 – 632 (2007)

9. Pesticide Residues in Foods by Acetonitrile Extraction and Partioning with Magnesium Sulfate, 2007 AOAC International

10. Extension of the QuEChERS Method for Pesticide Residues in Cereals to Flaxseeds, Peanuts, and Doughs, Koesukwiwat U, Lehotay S, Mastovska K, Dorweiler K, Leepipatpiboon N, J Agric Food Chem

11. Pesticide Multiresidue Analysis in Cereal Grains Using Modified QuEChERS Method Combined with Automated Direct Sample Introduction GC-TOFMS and UPLC-MS/MS Techniques, Mastovska K, Dorweiler K, Lehotay S, Wegs-cheid J, Szpylka K, J. Agric. food Chem.

12. Comparison of QuEChERS Sample Preparation Methods for the Analysis of Pesticide Residues in Fruits and Vegetables, Lehotay S, Son K, Kwon H, Journal of Chromatography A

13. A Rapid Multi-Residue Analysis Of Pesticides In Fruits And Vegetables Using A Buffered Acetonitrile Extraction And Dispersive Clean-Up, Brown A, Cook J

14. A Comparison of QuEChERS Products (Quick, Easy, Cheap, Effective, Rugged and Safe Approach for Determining Pesticide Residues) Prepared "In House" Versus Commercially Available QuEChERS Products, Poster Paper, Shelly D, Perman C

15. Benzimidazole Carbamate Residues In Milk: Detection By Surface Plasmon Resonance-Biosensor, Using A Modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method For Extraction, Keegana J, Whelana M, Danahera M, Crooksd S, Sayerse R, Anastasiof A, Elliott C, Brandonh D, Fureyc A, O'Kennedy R, Analytica Chimica Acta (2009)

16. **Multiresidue Pesticide Analysis of Wines by Dispersive Solid-phase Extraction and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry, Journal of Agricultural and Food Chemistry** Zhang K, Wong J, Hayward D, Sheladia P, Krynitsky A, Schenck F, Webster M, Ammann J, Ebeler S, (Draft Date 12/2008)

17. Determination Of Anthelmintic Drug Residues In Milk Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry With Rapid Polarity Switching, M. Whelan, B. Kinsella, A. Furey, M. Moloney, H. Cantwell, S.J. Lehotay, M. Danaher, Journal of Chromatography A (2008), doi:10.1016/j.chroma.2010.05.007

High Throughput Analysis Of 150 Pesticides In Fruits And Vegetables Using Quechers
 And Low-Pressure Gas Chromatography–Time-Of-Flight Mass Spectrometry, U. Koesukwiwat, S.J. Lehotay, S.
 Miao, N. Leepipatpiboon, Journal of Chromatography A (2008), doi:10.1016/j.chroma.2010.05.012

19. Refined Methodology for the Determination of Neonicotinoid Pesticides and Their Metabolites in Honey Bees and Bee Products by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Kamel, Alaa, J. Agric. Food Chem

20. Application Of The QuEChERS Extraction Method For The Analysis Of Pyrethrin And Pyrethroid Pesticides In Fin And Non-Fin Fish, Roscoe, Veronica, Judy, Judge, Rawn, Dorothea F. K., Florida Pesticide Residue Workshop, July 2009

21 .**Influence Of Different Disease Control Pesticide Strategies On Multiple Pesticide Residue Levels In Apple**, Poulsen, M. E., Nae, A. et al, Journal of Horticultural Science & Biotechnology (2009) ISAFRUIT Special Issue 58–61

22. New Method For The Analysis Of Flukicide And Other Anthelmintic Residues In Bovine Milk And Liver Using Liquid Chromatography–Tandem Mass Spectrometry, Kinsellaa, Brian & Lehotay, Steven J., Analytica Chimica Acta 637 (2009) 196–207

23. Analysis Of Polycyclic Aromatic Hydrocarbons In Fish: Evaluation Of A Quick, Easy, Cheap, Effective, Rugged, And Safe Extraction Method, Ramalhosa, Maria Jo, Paula Pa, Simone Morais J., Sep. Sci. 2009, 32, 3529 – 3538

24. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce, Anastassiades, Michelangelo and Lehotay, Steven J., Journal Of AOAC International Vol. 86, No. 2, 2003

25. Combination of Analyte Protectants to Overcome Matrix Effects in Routine GC Analysis of Pesticide Residues in Food Matrixes, Mastovska, Katerina , Lehotay, Steven J., and Anastassiades, Michelangelo, Anal. Chem. 2005, 77, 8129-8137

26. Applications of LC/ESI-MS/MS and UHPLC QqTOF MS for the Determination of 148 Pesticides in Berries, Wang, Jian, The 46th Annual Florida Pesticide Residue Workshop (FPRW), July 19 - 22, 2009

Further Information

Additional information useful to the analyst planning QuEChERS analysis may be found in the following websites:

UCT, LLC

www.unitedchem.com/

A commercial database of application methods and product information related to QuEChERS and other aspects of solid-phase extraction

www.quechers.com

The original website dedicated to the QuEChERS Technique

Nutrient Data Laboratory Website www.nal.usda.gov/fnic/foodcomp/search/

A nutritional database supported by the USDA Agricultural Research Service

European Websites

http://ec.europa.eu/food/plant/protection/pesticides/index_en.htm

An extensive website maintained by the Health and Consumer Protection Directorate General in Brussels

http://www.crl-pesticides.eu/docs/public/home.asp?LabID=100&Lang=EN

The Community Reference Laboratories and the National Reference Laboratories of the National Food Institute in Denmark

